Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available October 4, 2026
- 
            For the assignment problem where multiple indivis- ible items are allocated to a group of agents given their ordinal preferences, we design randomized mechanisms that satisfy first-choice maximality (FCM), i.e., maximizing the number of agents as- signed their first choices, together with Pareto- efficiency (PE). Our mechanisms also provide guarantees of ex-ante and ex-post fairness. The generalizedeager Boston mechanism is ex-ante envy-free, and ex-post envy-free up to one item (EF1). The generalized probabilistic Boston mech- anism is also ex-post EF1, and satisfies ex-ante ef- ficiency instead of fairness. We also show that no strategyproof mechanism satisfies ex-post PE, EF1, and FCM simultaneously. In doing so, we expand the frontiers of simultaneously providing efficiency and both ex-ante and ex-post fairness guarantees for the assignment problem.more » « less
- 
            We study fair allocation of indivisible goods and chores among agents with lexicographic preferences---a subclass of additive valuations. In sharp contrast to the goods-only setting, we show that an allocation satisfying envy-freeness up to any item (EFX) could fail to exist for a mixture of objective goods and chores. To our knowledge, this negative result provides the first counterexample for EFX over (any subdomain of) additive valuations. To complement this non-existence result, we identify a class of instances with (possibly subjective) mixed items where an EFX and Pareto optimal allocation always exists and can be efficiently computed. When the fairness requirement is relaxed to maximin share (MMS), we show positive existence and computation for any mixed instance. More broadly, our work examines the existence and computation of fair and efficient allocations both for mixed items as well as chores-only instances, and highlights the additional difficulty of these problems vis-à-vis their goods-only counterparts.more » « less
- 
            In the assignment problem, the goal is to assign indivisible items to agents who have ordinal preferences, efficiently and fairly, in a strategyproof manner. In practice, first-choice maximality, i.e., assigning a maximal number of agents their top items, is often identified as an important efficiency criterion and measure of agents' satisfaction. In this paper, we propose a natural and intuitive efficiency property, favoring-eagerness-for-remaining-items (FERI), which requires that each item is allocated to an agent who ranks it highest among remaining items, thereby implying first-choice maximality. Using FERI as a heuristic, we design mechanisms that satisfy ex-post or ex-ante variants of FERI together with combinations of other desirable properties of efficiency (Pareto-efficiency), fairness (strong equal treatment of equals and sd-weak-envy-freeness), and strategyproofness (sd-weak-strategyproofness). We also explore the limits of FERI mechanisms in providing stronger efficiency, fairness, or strategyproofness guarantees through impossibility results.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available